Extreme ultraviolet interferometry: at-wavelength alignment of diffraction-limited, prototype lithographic optics P. Naulleau¹, K. A. Goldberg¹, P. Batson¹, P. Denham¹, D. T. Attwood^{1,2}, and J. Bokor^{1,2} ¹Center for X-Ray Optics, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²EECS Department, University of California, Berkeley, California 94720, USA ## INTRODUCTION The quest to develop extreme ultraviolet (EUV) optics for use in next-generation projection lithography systems providing sub-100-nm resolution has led to various innovations in EUV wavefront metrology, including the EUV phase-shifting point diffraction interferometer (PS/PDI), developed by researchers from LBNL's Center for X-Ray Optics. The PS/PDI, and the EUV lithography program it supports, is described in detail elsewhere in this compendium. The PS/PDI is a diffraction-class interferometer, ⁷⁻⁹ in which the illumination and reference waves are created by pinhole diffraction. Furthermore, a diffraction grating is used as the beam-splitting and phase-shifting element. This diffraction configuration allows the PS/PDI to attain high reference-wavefront accuracy, recently measured to be better than $\lambda_{\text{EUV}}/330$ (0.4 Å) within a numerical aperture (NA) of 0.082. ¹⁰ ## ALIGNING OPTICS USING THE 10x-SCHWARZSCHILD PS/PDI The PS/PDI currently installed at ALS beamline 12.0.1.2 was designed and implemented to characterize and align 10×-reduction Schwarzschild objectives used as prototype lithographic small-field stepper optics. These optics are used as the imaging system in two EUV microsteppers developed at Sandia National Laboratories, and have played a key role in the recent rise of EUV lithography as one of the favored *next-generation-lithography* options. The PS/PDI has been in continuous use and under ongoing development since 1996. Recent improvements include greatly extended dynamic range and measurement bandwidth. The interferometer has been successfully used to characterize a multitude of $10\times$ -reduction EUV lithography optics. During the past year the PS/PDI was utilized to align two new state-of-the-art $10\times$ -reduction Schwarzschild objectives. These optics were fabricated to the same optical tolerances as those used in the commercial-class large-field 4-mirror optical system concurrently being developed by the EUV lithography program. The optics have been designed to provide better than $\lambda/20$ rms wavefront quality with an image-side NA of 0.088, providing diffraction-limited resolution below 100 nm. They utilize molybdenum/silicon multilayer coatings designed for peak reflectivity at 13.4-nm wavelength. The system wavefronts of two newly fabricated optics, aligned with EUV interferometry are summarized in Fig. 1. Based on fitting to the first-37 Zernike polynomial terms, 11 the rms wavefront error magnitudes (σ) for optics labeled B1, B2 are 0.60 nm (0.045 waves), 0.63 nm (0.047 waves), respectively, within 0.088 NA. In both cases the wavefront quality goal has been surpassed. Although two-pinhole null tests have been used to measure the accuracy of the PS/PDI to be better than $\lambda_{\text{EUV}}/330~(0.4~\text{Å})$, the ultimate test of accuracy for a system designed to align lithographic optics are printing results. Figure 2 shows images taken both before and after EUV alignment of the B2 optic described above. The images demonstrate the performance of the optic with both isolated and dense 100-nm features in two directions, in and out of the optimal focal plane. The images were recorded using the EUV Microstepper at Sandia National Laboratories, and demonstrate that the PS/PDI has successfully achieved diffraction-limited alignment. **Fig. 1.** PS/PDI-measured wavefronts of two recently fabricated 10×-reduction EUV Schwarzschild cameras. The wavefront statistics are quoted over an off-axis NA of 0.088, and are based on 37-term Zernike fitting. The displayed wavefronts, however, include higher spatial frequency features, and are individually scaled. The measurement wavelength was 13.4 nm. **Fig.2.** Images taken both before and after EUV alignment of the B2 optic. The images demonstrate the performance of the optic with both isolated and dense 100-nm features in two directions, in and out of the optimal focal plane. The images were recorded using the EUV Microstepper at Sandia National Laboratories. ## **REFERENCES** - 1. J. E. Bjorkholm, A. A. MacDowell, O. R. Wood II, Z. Tan, B. LaFontaine, and D. M. Tennant, "Phase-measuring interferometry using extreme ultraviolet radiation," *J. Vac. Sci. & Technol. B* **13**, 2919-2922 (1995). - 2. A. K. Ray-Chaudhuri, W. Ng, F. Cerrina, Z. Tan, J. Bjorkholm, D. Tennant, and S. J. Spector, "Alignment of a multilayer-coated imaging system using extreme ultraviolet Foucault and Ronchi interferometric testing," *J. Vac. Sci. Technol. B* **13**, 3089-3093 (1995). - 3. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, "Phase-shifting point diffraction interferometer," *Opt. Lett.* **21**, 1526-1528 (1996). - 4. E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, and D. Attwood, "At-wavelength interferometry for EUV lithography," *J. Vac. Sci. & Technol. B* **15**, 2455-2461 (1997). - 5. K. A. Goldberg, "Extreme Ultraviolet Interferometry," Ph.D. dissertation (University of California, Berkeley, 1997). - 6. K. A. Goldberg, P. Naulleau, P. Batson, P. Denham, E. H. Anderson, D. T. Attwood, J. Bokor, "Extreme ultraviolet interferometry: measuring and aligning an EUV four-mirror ring-field optical system," this compendium. - 7. W. Linnik, "A simple interferometer to test optical systems," *Proceedings of the Academy of Science of the USSR* 1, 210-212 (1933). - 8. R. N. Smartt and W. H. Steel, "Theory and application of point-diffraction interferometers," *Jap. J. Appl. Phys.* **14**, Suppl.14-1, 351-356 (1975). - 9. G. E. Sommargren, "Phase shifting diffraction interferometry for measuring extreme ultraviolet optics," OSA Trends in Optics and Photonics Vol. 4, *Extreme Ultraviolet Lithography*, G. D. Kubiak and D. R. Kania, eds. (Optical Society of America, Washington, DC 1996), pp. 108-112. - 10. P. Naulleau, K. A. Goldberg, S. Lee, C. Chang, D. Attwood, and J. Bokor, "The EUV phase-shifting point diffraction interferometer: a sub-angstrom reference-wave accuracy wavefront metrology tool," *Appl. Opt.*, **38**, 7252-7263 (1999). - 11. A. Bathia and E. Wolf, "The Zernike circle polynomials occurring in diffraction theory," Proc. Phys. Soc., B65, 909-910 (1952). This research is supported by Intel, Motorola, and AMD through the EUV LLC, SRC contract no. 96-LC-460, DARPA's Advanced Lithography Program, and the U. S. Department of Energy under the Office of Basic Energy Sciences. Project Leader: Jeffrey Bokor, Center for X-Ray Optics, Ernest Orlando Lawrence Berkeley National Laboratory. Email: jbokor@eecs.berkeley.edu. Telephone: 510-642-4134.